

~ 1 ~

The Philosophies of Software

Lindsay D. Grace

Chapter Draft dated 6/08

Found in:

The Handbook of Research on Computational Arts and Creative Informatics

Published: May 2009

Editors:James Braman, Giovanni Vincenti, Goran Trajkovski

ISBN: 1605663522

ISBN-10: 9781605663524

Length:579 pages

~ 2 ~

The Philosophies of Software

By

Lindsay Grace

Introduction

There is a simple logical proof that describes

software’s relationship to philosophy. Software

is designed. Design prescribes philosophies.

Since software is designed, it must also dictate

philosophy. The existence of these

philosophies, their sociological effects, and the

need to critique these philosophies is the focus

of this writing. This writing does not seek to

define ontologies of philosophies, nor does it

seek be an exhaustive examination of the many

philosophies that have been institutionalized

into the practices of developing and using

software. Instead, this article seeks to highlight

the existence of a few important philosophies in

an effort to encourage practitioners to critically

examine their relationship to software and its

effects on their practice. In particular, critical

assessment of software philosophies engenders

fresh approaches to universal, original and

effective design.

There are several existing areas where

philosophy exerts an influence on software.

Each of these areas is not only affected by

inherent philosophies, but each area inspires

the growth of their individual philosophies by

the design and use of their systems. In some

cases, the philosophy intersects to create a

fulcrum on which multiple assumptions about

the construction of the world express

themselves. The following sections attempt to

outline a few of the major philosophical

undertones of common software applications as

they relate to the Design of User Interfaces,

Avatars, and the use of object orientation.

Careful examination of software decants the

following key philosophical elements:

• The Heavy Use of Analogy

• The Application of Reductivism

• An Emphasis on Transferred Agency

Each of these elements directs users toward

specific modes of operation, problem solving

and creative efforts. This chapter concerns itself

with the identification and evaluation of the

philosophies resulting from the use, either

successful or unsuccessful, of software built

with these elements. The final section of this

writing highlights how these philosophies

instruct software users.

~ 3 ~

Background

For some, Philosophy is a term that should not

be paired with software. Within this subset,

philosophy is abstract, whereas computer

software design is science. Granted that there

are scientific underpinnings to software, it is

important to recognize that software is used in

increasingly abstract ways. It is used to create

art, it is used to communicate, and it is used as

an integral part of daily work that involves

abstract thinking.

The philosophy of software is a topic of research

and rhetoric in many disciplines. Although not

always considered a philosophical examination,

practitioners of law, education, commerce and

nearly every software-effected discipline have

discussed a kind of philosophy of software.

These concerns include intellectual property

rights, electronic learning, and the design of

systems. The philosophical and commercial

work of the Free Software Foundation, for

example, is directed toward the specific effect

software production philosophies have on the

quality of software produced. Theirs’ is largely

an examination of how software production is

practiced, not an examination of how software

effects production. This writing seeks to expose

the effects of philosophies so ingrained in the

production of software that they are seemingly

transparent. In the oft-used paraphrase of

Marshal Mcluhan, we shape our tools and then

our tools shape us (1994).

It is important to note that this discussion

excludes an examination of hardware’s role.

This is because hardware finds design from the

realities of physical sciences, where software

finds design from logic. The critical evaluation

of this logic decants priorities, ideologies, and

value systems. Simply stated, it influences the

foundations of existing philosophies. Those

philosophies are encoded in the language and

structure of software, and interpreted by the

user.

Investigations into the effect of language on

people’s ability to understand specific ideas are

perhaps more akin to the focus of this chapter.

In Noam Chomsky’s (2006) essays, (complied

later in the book Language and Mind), he

encouraged critical assessment of the

relationship between linguistics and philosophy

that opened for examination whole processes of

communication and approach. The role of

linguistics as a tool through which we produce

and communicate meaning is similar to the role

of software. Software serves as the tool through

which much daily production and

communication occurs, making it the lingua-

franca of operation in most of the western

world. It is the basis for communication and the

primary vessel that facilitates communication.

Programming languages are also the tools we

use to direct the development of a solution.

The wide canon of writings describing human-

computer interaction also serve as a solid

foundation for understanding the tight

relationship between psychology and sociology

in the development of software. Ben

Shneiderman’s Software Psychology: Human

Factors in Computer and Information Systems is

a good starting point. Work in Human

Computer Interaction is an easy avenue through

which to discover the philosophies of software.

It is at this edge of computer science that its

many philosophies are first experienced. Human

Computer Interaction is also an approachable

subject for anyone who has ever used software,

as the user has experienced at least one end of

this relationship. As such, this writing extends

much of its critique to the decisions made about

how people must interact with computers.

Lastly, and perhaps most importantly, readers

may find valuable related critique in the writing

of Jaron Lanier. In particular his essays, One

Half of a Manifesto, and Digital Manifesto,

evaluate the relationship of computer

technology to the society in which it is

developed (Lanier, 2006). Where Lanier’s

concern is with the overarching social effects of

computer development, this text investigates

the narrower effect of software design on the

process of problem solving.

Analogy

Design of User Interfaces

Software user interfaces are largely constructed

through metaphor. The desktop of an operating

~ 4 ~

system, the buttons, files, sliders, and others

tools are digital implementations of real-world

objects and interactions. As theorists have

outlined, many of the metaphors are

reinterpretations that fail to be wholly faithful

to the representation of their original. The

desktop, for example, is a shallow metaphor

because it exceeds and misaligns the attributes

of a real-world desktop. Among its weaknesses

as a metaphor is the fact that actual desktops

have three dimensions, edges, physics, and

other elements not present in any of the

dominant operating systems. Even more recent

attempts, such as Bumptop, choose specific

attributes to perpetuate the use of such analogy

(Agarawala 2006). The result is a filtering of

subject. This filter exposes the author’s values

and understanding.

This selected representation of specific

elements through metaphor identifies the first

hint at the philosophy in user interface. If there

is a reinterpretation of the physical object into

digital space, then the designer has selected

from a list of properties those items that best

meet the designer’s understanding of the

physical object. The result is a simplification, or

a kind of wire frame, that exhibits only the items

that are most valuable in identifying an object.

This value is defined by the one who

implements the interface.

Analogy itself is neutral, but the application of

analogy is not. In writing, analogy is a rhetorical

device employed by the author to make a point.

Analogy is a device of argument. In the writing

of software, analogy continues to make claims.

It highlights what is important, and shadows

what is not. Yet, unlike writing, software claims

are not the subject of critique. Software is

understood because it is a tool, and is not

designed to withstand critical assessment as its

primary function. Yet, an analogy speaks

volumes about both the item critiqued, and the

author. Every analogy resounds with the

author’s value system, simply because the

process of analogy requires the author to

identify wheat and chaff. That which is

discarded is of no value to the author, yet in

other contexts, that which is discarded is most

valuable.

Consider the window as analogy. The dominant

property of the operating system window is its

ability to display content within it. The analogy

is simple to understand. Windows in buildings

show the content of the world; software

windows display their subject content. Yet,

that is not all windows do. Windows insulate,

move, and provide multidimensional

information about time of day, weather

conditions and more. Windows also do more

than open and close. Of the many properties of

windows, only one dominates the analogy.

Other properties are discarded, to simplify the

analogy.

In its early fabrications, the graphical button is

simplified to an item with two states, on and off.

It is differentiated by size, color, and more

recently shape. In these two simplifications, the

philosophy of design manifests itself. From the

dominant theories of computer science, the

button is simplified into binary states. The

button is either on or it is off. Yet, a literal

representation of a button would allow for

range. Do buttons in real world machines

merely have an on and an off, or do they also

exhibit other properties based on length of time

depressed, speed of depression, and number of

clicks? Interestingly, the extremely pervasive

intermediary between user interface and user,

the mouse, does exhibit these properties: click

and hold and double-click. However, once the

button becomes digital such properties are

selected against. These selections permeate

successive generations of software and in turn

shape the way in which buttons are understood.

The rarity of timer-based buttons, switching

buttons or dial and push buttons, all historically

useful physical interfaces, is a hint at the

forgotten population of interface elements.

Instead, the designer of interface routinely

works within the understanding of interface

defined by their predecessors. Web Design and

Business systems are particularly prone to such

tendencies, as their production times are

shortened in the race to bring the product to

market. Yet, these are everyday interfaces, like

the microwave and the television. The everyday

interface may easily be among the first human-

computer interactions for an individual. This

initial experience will likely define an individual’s

~ 5 ~

expectations, and more importantly, their

understanding of interface. The everyday

interface is the gateway to software philosophy.

Philosophical Contradiction: The Acceptance of

Non-Truth

To become aware of the philosophies of

software, it is important to become aware of its

values. Windows and buttons are shallow

metaphors. They require substantial suspension

of disbelief or belief when used. That

suspension is aided by obscuring the user’s

conventional understanding of the item.

Suddenly one window cannot be seen through

another. Somehow, two buttons can exist in the

same space. One such classic example is the

original Apple Macintosh trash can interface

element. The trash was a place to discard old

files, but it also serves as the means of ejecting a

diskette from the machine. To use the

operating system, the user accepted the

contradiction that disk retrieval occurs through

the discarding process.

In these environments, the permeation of

analogy inflicts perceptual and conceptual

contradictions that the user must accept in

order to use the system. Paradoxically, the

interface becomes a world of same, same but

different rules. Those rules are managed by an

inherent value system, which enforces what is

important to perceive and what is not.

Conventionally, if a user tries to make a button

stick down, they will fail. If a user tries to hold

multiple buttons they will fail. Interface is thus,

prescriptive. It instructs its value system by

creating a reward system. If the user accepts its

value system, the reward is success. If the user

fails to accept its value system, the user is

punished with impotence in the software

environment. Beyond the interface, this

instruction abounds in software from video

games to business applications. Efficacy in a

software environment cannot be achieved

unless the individual subscribes to the

applications rules. If those rules contradict each

other or the individual’s understanding of the

world, then the individual must still accept them

or surrender his ability to act within the

software environment.

The dominant human-computer interaction

model demands this prescription, but it is not

the only approach available. Some video game

environments have, in their constant treasure

hunt for play, made spectacular inroads into

non-prescriptive human-computer interaction.

Sandbox games or environments in which the

toolset may be constructed and manipulated by

the user’s definitions offer fascinating anti-

prescriptive opportunities. Their potential for

educators, and for critical assessment of

process, is inspirational. Although the

application of this method in non-play

environments continues to be limited, sandbox

environments such as Gary’s mod are quality

examples and offer alternatives to the most

common modes in use today.

The Origins of Analogies

In order to critique the analogy, it is important

to understand its genealogy. In some cases

such choices are the result of iterations on the

same initial design. In other cases, these

choices are derived from an interpretation of

other disciplines. The analogies of the early

painting programs demonstrate a clear

translation of paint technique and color theory.

Each time, there are notable exceptions that

illustrate a system of values in the application.

Software that may be analogized to painting

processes have focused on the brush and

vehicle, but not the surface to which they are

applied. Users may choose brush size, pattern,

vehicle, and others yet the fundamental choice

of the character of the surface to which the

virtual paint is applied remains the same. The

selected properties mimicked by the application

do not compliment the process of painting, but

they are prescriptive.

Such environments also preempt the possibility

of alternative models of creative process. The

process, its tools and their relationships are

predefined. Consider how difficult it is to create

a work in the tradition of Jackson Pollack, for

example. His work relied heavily on a

multidimensional approach to paint application.

~ 6 ~

Most applications focus on the tool and the

narrow application of intended use. These

applications do not employ algorithms that

calculate brush momentum, gesture or brush

material. The applications selectively mimic the

process. The resulting omissions exclude

specific forms of art process because they are

beyond the software designer’s initial definition

of painting.

In compliment, selected art theory is applied to

even the most mundane graphical user interface

elements. The fundamental notions of graphic

design extend into button design. Half of what

is understood as graphic design’s basic elements

voices itself in the differentiation of buttons. As

interface technology improves, it implements

more of these elements. Shape, texture and

hue, for example, are now standard button

attributes where once they were not.

Yet graphic design prescribes only one practical

means of understanding its subject – in finite

space and time. The philosophy of graphic

design is tethered by a long-standing

relationship to permanent state production. In

its philosophy, an item is created in a specific

moment and has a set of attributes that remain

true for the objects existence. Size, shape,

texture, lines, hue and others are permanently

identifiable. This is not true of interactive

design, which is fundamentally impermanent.

An interactive design has varying properties

depending on multiple dimensions that include

time, space, and event but are not limited to

them. Interaction design may also be

understood as a confluence of product of actor,

state, use case and more according to the

Unified Modeling Language (UML). If UML, a

language designed to assist in the design of

large software systems, describes interaction

more completely than the software used to

create interface, there seems to be a schism

between understanding and implementation.

The likely reason is reductivism.

Reductivism: The Finite State Machine

Reductivism defines an historical art movement

of painting and sculpture that emphasized

simplification. It is also a dominant practice in

the construction of computer solutions.

The practice of analogy-based software

implementations is reductive in nature. The

relationships, interactions, and processes

executed by the computer are reduced to their

simplest forms. The fundamentals of computer

science call for its authors to reduce their

subjects to their interpreted atomic forms. For

example, a button becomes an element with

only two states, or a customer becomes a

number.

The finite state machine, or FSM, is an excellent

starting point for analyzing the effect of this

reductionist philosophy. For computer scientists

the finite state machine serves as a model of

behavior. It decomposes its subjects into a finite

number of states, then or and transitions

between those states and actions. The finite

state machine is a popular approach to

engineering computer logic, including artificial

intelligence and human-computer interaction.

Philosophically, the finite state machine defines

computer science. Its first step is to make the

seemingly complicated simpler. Like much of

the scientific approach, it begins by identifying

the fundamental elements of its subjects and

then it constructs a simulation of behavior from

those elements. This construction occurs

through a process of deconstruction, where

anything to be modeled is first dissected and

labeled. Driving a car for example, becomes a

flowchart of red light checks and speed

monitors effecting driver and car.

All of the FSM modeling process hinges on the

appropriate identification of states, transitions

and actions. If an element is left out, or it is not

related correctly, the resulting software fails to

complete its accomplished goal. The process

relies heavily on proper decomposition. If the

subject is cut in the wrong way, the software

may fail to be an accurate model. Yet, the

subject must be reduced in order to fit the

limitations of computer science. If it is to be

modeled in software, the dictum reads, it must

be simplified. Again, as in analogy, this

reduction necessitates a set of selections. The

initial designer of software must decide which

elements remain, and which do not.

~ 7 ~

Quality software production, as currently

defined, borrows its understanding of process,

states, and the atomic units of its subject from

study of the specific situation. A system

designed to model chemical interactions, for

example, will be informed by research in

chemistry. This works particularly well for

scientific disciplines, which share in the

reductive approach to understanding problems.

However, what happens to the disciplines that

are not reductive? If a discipline or

philosophical understanding of a discipline is not

reductive, then computer science may fail to

apply its theories.

Consider the contemporary definition of art,

which does not assert itself as an understanding

of singular necessary components. By some, art

is understood as a deliberate arrangement.

Deliberate can’t be defined as a state, a

transition, or an action. Deliberate arrangement

is the quality of an action, but the FSM has

never been well suited for qualities. The

qualitative, that which rests on a non-finite

judgment, is not simply categorical. It cannot be

quantified, and as such becomes an unmodeled

element. In most cases it is simply truncated as

a non-calculable. When qualities are judged in

computer science, they must still be converted

to quantities. Consider the basic algorithm for

drawing a curved line on a standard monitor

display. If the curve is to be bitmapped for

display, software must decide which square

pixels will be lit to establish the curved line. All

pixels are arranged in columns and rows, so a

curve must be estimated. Simply, a curve must

be forced into the categorical and decomposed

into rows and columns. The result is something

that looks like a curve, until it is scrutinized

carefully. It is like a curve, but it is a

simplification of a curve. The bitmapped curve

serves as a proof in computer software design

terms. It is analogous to the way software

models subjects that are not scientific; it ignores

that which does not fit its designed intention.

The result is that the bitmap serves as a strong

analogy, and will be used. The vector does not,

and will be ignored.

Dominant computer software development

techniques, such as object orientation,

procedures, and others fail to sufficiently solve

many problems that are wholly qualitative. In

order to apply procedures, for example, the

subject must still be decomposed. This is where

a very wide gap distinguishes itself. If the

subject of a software-ization is not reductive, it

will more often be turned into reductive

elements in order to fit dominant software

philosophies.

For computer scientists, the many dimensions of

interaction can be encoded into state machines.

A common scientific view of interaction requires

three processes; define a timeline on which to

design, define a screen dimension, and create

an event model. Yet, even when all three of

these dimensions are combined into a single

piece of software they prescribe a specific

understanding of the world. Event models

describe actions that are rigidly categorized to

support the computers understanding of

interaction. Events are trapped singly, as an

intersection of space and time. Space is defined

in absolute terms, as coordinates in a grid.

This model, included first by the software

developer, is then adopted by the user of the

software, a designer. The designer, eager to

build with the tool they have been given, must

accept this model in order to operate within the

software’s constraints. The designer must

define their understanding of interaction to

accommodate the software’s abilities.

Before long, the other means of interpreting

user input or of describing relationships simply

eludes many designers. The other

interpretations are not beyond comprehension,

they simply fall in the shadow of other’s

successes. Much like the history of the electric

car, which is as old as its combustion based

peer, other software philosophies languish.

They languish in the absence of research, and in

the distraction produced by the show-stealing

conventional approaches. After all, the logic

reads, these approaches have served us well.

Still, it is easy to be critical of such

interpretations. In the case of interface, isn’t

space also understood in relative terms, as in

proximities, neighbors, and distances? Aren’t

there degrees to interaction that indicate

situation? The use of such software drives the

user away from these questions. Instead, a

~ 8 ~

predefined level of granularity, deemed

appropriate by an initial designer, is accepted as

useful truth. Eventually, a literal understanding

of interaction is supplanted by a modeled

understanding of interaction.

Finally, it is important to understand that the

finite state machine sits near the intersection of

linguistics and computing. Students who learn

programming language design, for example,

learn the fundamentals of regular grammars and

the Chomsky Hierarchy. The hierarchy was

theorized by Noam Chomsky, the linguist and

philosopher. Chomsky’s work provides the

philosophical basis for the way many computer

languages interpret instructions. Simply, every

programming language that employs Chomsky’s

Hierarchy is employing Chomsky’s philosophies.

These are philosophies of communication,

human behavior, and human relationship.

Reductivism: Object Orientation

Translating the designer’s needs into binary

terms that the computer understands is an

artifact of digital design. The current philosophy

states that for software to work, all things must

be reduced for codification. This is due in part to

finite state machines, but object oriented

development, with its hierarchies and

inheritance, also drives software development

and use.

Software applications are typically developed

under the master philosophies of object

orientation and inheritance. This philosophy

prescribes that there are distinct entities, which

when categorized can be forced into an

ontology that adequately describes all expected

situations. The assumption apparent in this

approach works well for producing specific

types of software but is exasperating when

evaluated from the creative perspective. The

philosophy reads that the world is comprised of

a finite number of blocks through which there

are an estimable set of permutations. If so, this

determination predicts a calculable end to

creative potential. There are only so many ways

that each object can be constructed in this finite

world. Wouldn’t that then leave the creative

world toward an enormous game of Sudoku,

where each artist is merely attempting to

complete the missing permutations?

A challenge facing software developers can then

be traced to the fact that they are taught to

compose solutions from dissected components.

Object orientation champions the process of

simplifying and labeling. These simplifications

are shallower than those of the analogies

dominating interface because they have become

the truth of the software system. Developers

begin building their solutions from the already

modeled objects that existed before they began

their project. A conversation between two

computers for example, may have been

modeled as a group of listener and speaker

objects. Through years of use, that definition of

conversation becomes the only definition of

conversation. If many applications have been

built against that object model, and if there are

no problems that arise from that understanding,

then it is understood to be an accurate model.

Yet, if everyone is working of off that model,

and the understanding of that model is passed

all the way through to the user, then how will

problems occur? Who is left to reinterpret it?

The model becomes truth.

Interestingly, science informs science, as

computer science finds and defines its solutions

by definition provided through other sciences.

The terminology in object orientation, for

example, is clearly borrowed from genetics.

This is a type of incest, which begets solutions

that serve themselves. To understand computer

science, one must accept its cousins, namely

genetics and math. But both these sciences, by

their own admission, are incomplete and

arguably self-affirming. Genetics has many

questions in heredity to answer and

assumptions to debunk. Contemporary

mathematicians are in the middle of a

fundamental reevaluation of math itself

(Barrows). As Barrows (1992) described in his

critical history of mathematics “our picture of

the most elementary particles of matter as little

billiard balls, or atoms as mini solar systems,

breaks down if pushed far enough, so our most

sophisticated scientific description in terms of

particles, fields, or strings may well break down

as well if pushed too far” (Barrrows, 1992, pp.

21) If “mathematics is also seen by many as an

~ 9 ~

analogy” (Barrrows, 1992, pp. 22) then isn’t the

construction of software solutions the

organization of analogy on an analogical

foundation?

Also forgotten is the idea that science, as has

historically occurred, can borrow from art or

other non-scientific approaches. The producers

of several great works in the mathematical

realm include multi-practitioner philosophers

ranging from Plato to Bertrand Russell. Like

computer scientists who attempt to fit solutions

into the analogy of object orientation, these

practitioners use analogy to explain their

philosophies. Yet, not surprisingly, these

analogies do break down when pushed too far.

Artists, after all, are encouraged to find this

breaking point.

The results of this breakdown, the disparities

between the pre-defined modular units of a

software application and an individual’s desired

solution, occur routinely. When identified, the

common resolution for such problems is to use

the existing model to construct unexpected

results. If, for example, an artist’s 3D software

creates only 4 primitives, they are instructed to

create a 5
th,

previously undefined primitive by

using the original 4. Yet, the 5
th

 pyramid may

not actually be a 5
th

 pyramid; it may be a model

of the 5
th

 pyramid, lacking some of the 5
th

primitive’s real properties. In casual software

language, this is a workaround or hack. The

solution is an un-planned retrofit of the solution

provided. Too much need for hacking typically

indicates insufficient design, yet for creative

enterprises, the hack is often the fundamental

work unit. New media artists, for example, are

fully immersed in the process of hacking, simply

to create their proposed solutions. In more

practical terms, 3D animations are performed

on stages, with rough simulations and

environments, like backdrops on stages, and are

often not represented in three dimensions, but

in two dimensions. This fact then hints at an

insufficient solution. The current solutions fail to

meet individual’s needs.

Returning to the 5
th

 primitive, it is not

important, in the eyes of the computer scientist,

because it is not part of the original definition of

its subject. The world, as defined in the initial

software design, does not contain such objects.

This is the case with non-Euclidian spaces, like

the Mobius Strip or Klein Bottle, which, outside

the original models of geometry created by

software architects, are very difficult to

construct in computer software. The artist is

made impotent in a world of digital imagery that

precipitates from a chosen philosophical

approach, here Euclidian geometry, in to the

representation of their image.

In a broader scope, this codification permeates

our approach to solving many problems. Simply,

Computer Science philosophies deteriorate our

understanding of the world. It champions low

fidelity, by encouraging the simplification of

data, relationship, and multidimensionality. A

good computer scientist, as the mantras dictate,

converts complicated problems into a subset of

simple ones. The mantra ignores its opposite.

No computer scientist seeks simple problems

and complicates them. Yet, artists often seek

simple problems and complicate them. From

this perspective, the computer scientist is

trained in the act of decomposition. The artist is

trained in composition.

As an example, war has a simple solution, stop

fighting. The artistic philosophy seeks to unearth

the complication in the solution. The artistic

philosophy mandates a complication – why is it

so hard to stop war, who is involved in war,

what does it mean to stop war. The computer

science philosophy, instead, seeks to simplify

the problem of war so that it may be codified

into algorithms. For the philosophy of computer

science war is a collection of attributes, mini

problems, hierarchical structures, and structures

which, like atomic structures, combine to create

a whole. Computer Science suggests that it is

the responsibility of the designer to interpret

those atomic parts before construction. The

instructed exercise is simplification - moments

become minutes, individuals become groups.

To approach the resolution of a problem in any

other way on a computer is futile.

The first governments were built on the

identification of appropriate purpose of

government. Yet that understanding changes

over time, and the models changed with their

understanding. For some, kingdoms turned to

~ 10 ~

democracies based on assessment of need.

Kingdoms, as defined by their kings, were for

the benefit of their subjects. They were

understood to provide a necessary top-down

approach which enforced perpetual, informed

management. As some governments evolved,

they found a less hierarchical design met their

needs. Through a series of wars, hierarchies

were overturned for democracies. The

democracy continued to offer perpetual,

informed management, but the management

moved from single silos to more complete,

multi-dimensional perspective.

What these civil histories offer, even described

in scientific terms, is a model for the potential

evolution of software design. The kings of

software design hear dictatorial truths about the

process of creating solutions, confronting

revolutions. Alternative models, such as the

growth of open source software or the

democratization of information encouraged

through various web-based tools like Google

maps, indicate a change in way software is

constructed. The change is somewhat

democratic. Where there was one architect,

there are ten. Where there was one algorithm,

there are now three algorithms, and twice as

many authors.

In order for artists to continue their history of

revolution from within the digital domain they

must operate outside the inherent philosophies

of the software they use. The artists must

operate beyond the defined class with

identifiable property and objects. They must

find a creative space that does not dictate a

master–slave relationship between hardware

and software components. To accomplish this

requires far more initiative and conviction than

one might assume. Even the seemingly

democratizing force of web art is inherently

ruled by philosophies of super-users, IP

checkpoints, and a cascade of style inheritance.

Fundamentally, codification means a

reinterpretation from spectrums to silos. The

only thing that changes is the resolution of

those silos. Silos become wider, or thinner, but

they continue to be silos. The process of

codification is richly philosophical, requiring

judgment, selection and interpretation.

Critically, the decisions to codify are defined by

science itself, leaving little space for other

approaches. Yet, the opportunities for

extending the reach and power of software may

exist beyond the walls constructed by the

dominant approach.

Reductivism: Examining the Reductive

Language

The language of computing is binary. Its

language does not operate on ranges, but its

resolution is able to exceed human perceptual

range. In the display of graphics, for example,

color calculating algorithms are capped to the

65 million colors that are understood to be the

perceptual range of human beings. This

decision presumes many assumptions – there is

no need to code for anything but the average

person. The science of human color perception

is complete, so development beyond perception

is unimportant. Out of historical context, these

assumptions seem reasonable. In the context of

history, they are ideological. Did we once

believe the world was flat? Did we once believe

the entire world had been mapped? Did we

believe the human body was made of humors?

Critically, the act of simplification, the

philosophy of deconstructing and codifying,

abounds in the software we use.

Transferred Agency

The Use of Avatars

In recent years, avatars have become the

dominant device for movement in 3D virtual

spaces. They are a logical extension of the

mouse pointer. What the mouse pointer, is to

the index finger in a 2D user interface, the

avatar is to the body in 3D space. Both,

however, offer an inherent ideology – the user

needs agency through a third party.

Good design has evolved from the pointer-

facilitated navigation to the touch-screen. The

result is a system that is easy to use and

requires little training. It is, to use an often

dangerous term in human-computer-

interaction, intuitive. Touch screen use in

automobile navigation systems or automated

teller machines is likely easy to use because it

~ 11 ~

removes an intermediary. People do not

expect, or necessarily want, the computer to act

for them. They want to act.

In education this is a point of critique. Should

the teacher assist the student in coloring within

the lines, or allow the student the freedom to

color outside them. In software, the bias is

toward prescription, not exploration nor

adaptation.

The use of avatars in games is an interesting

illustration of this tension. Games are designed

to be immersive. They seek to envelope the user

in a manufactured experience through a series

of simulations and real world analogies. To seem

threatening, fire, for example, must emulate the

properties of fire in the real world.

A game avatar is a copy of self, in another

environment. It is a live broadcast, with self as

subject combined with a fiction. Paradoxically,

the avatar is the person and it is not. If the

player understands the character is not self,

then they may sacrifice some components of

the immersive experience. If they believe it as

self, then they must subscribe to an arresting

philosophy.

The logic is as follows. The avatar is not self. The

avatar has great efficacy in the world. I do not

have efficacy in the world. I can use the avatar

as a tool to gain efficacy in the world. Efficacy is

gained through the use of tools. The avatar

reinforces the use of tools for agency, not just

augmentation of agency. The tools within

software encourage their necessity. Using

software reinforces, at least philosophically, the

need for software.

The dynamic of avatar based software is one of

master to slave. The slave, or avatar, is only

useful when they are faithful to the commands

of the master, or user. An avatar that fails to

heed commands is buggy or useless. The

prescribed use of avatars indicates that avatars

must take commands and take the user’s risks.

Avatars are also identified by an outward

appearance. In the multimedia world this is a

balance of sight and sound. Yet, this is another

shallow interpretation of identification. If

science has been wrong in its perceptions, how

can perception be decanted to what is

reproducible in vision and sound? The

dominant theory is that more life-like

performance is delivered from increased data

resolution. If pixel resolution extends beyond

our understanding of human perception, then

theory dictates that it will be perceived as a real

image. Yet, theory does not offer resolution to

the dilemma that perception is a multi-

dimensional equation. To sell a better image as

“more real” is to sell a larger steak as more cow.

The whole of perception extends beyond the

silos of sight and of sound. One philosophical

view is to consider sight and sound, not as the

computer treats them, but as they may be in the

real world – a codependent harmony. The

deconstructive tendency of Computer Science

encourages the use, treatment, and display of

perceptual elements independently.

Although quickly discredited in scientific

communities, the notion of self and of image of

self has been argued to a point beyond what

science perceives. Psychological and

sociological basis both find themselves as under-

represented social science minorities when

analyzing avatar implementation. It might be

argued that avatar compliments, however, do

provide social-psychological informed

equivalents in crowd simulation and other

models of social behavior. Yet, critical review of

these systems finds an initial iteration that is

first informed by physics simulation and then

roughly layered with pseudo-socio-psychological

logic. This logic is, of course, reduced to mini-

module logical expressions that reduce the

social sciences to computable patterns. Simply,

the aforementioned social science minority finds

representation in an avatar world, but it is

neither significantly represented nor wholly

represented. Where Newtonian physics find

pervasive application, the soft sciences are

episodically integrated into the 1
st

 order science

worlds. As anecdotal proof, I offer the

disposition of a course introducing the

relationship between psychology and computer

programming:

“It was hoped that this course would have

encouraged participants to view software

engineering as a human activity, as well as a

~ 12 ~

more formal discipline. However, the course

was cancelled by the powers-that-be after its

first semester with lack of student interest being

cited as the reason.” (Lenarcic, 2004, pp. 257)

The exclusion of social sciences in the

development of software systems, even systems

that seek to emulate human behavior, is

seemingly absurd. How does the science that

researches behavior find itself noticeably absent

from the science seeking to simulate its

philosophies? How did social sciences come to

occupy the radical edges of computer science

when the computer was designed to serve

human needs?

Most likely, the reason is in the philosophy of

software. Social sciences are scant to reduce

problems to a few small causes. Good social

science, the ideology dictates, recognizes the

complexity of relationships between the myriad

of factors causing specific situations. Good

computer science seeks to reduce those factors.

Consider the Boids algorithm. It is an attempt at

coding the movement of animals. It reduces the

intelligence of movement to 3 key factors,

separation, alignment and cohesion. The result

is a believable simulation of flocking movement.

Successive iterations expand on or use these

factors. Yet the foundation for this behavior is

primarily physical. A social science description

of the primary factors might begin with factors

such as intention, drive, desire, and social

affinity. Since neither implementation is actual

executed in a physical space, but in a theoretical

virtual space, both has as much applicability as

the other. Yet, the 3D world is driven by a

previously existent definition of its world based

on a definition of 3D spaces. Hence, an

animator finds themselves demonstrating

emotion through physical gestures, and later

working in sound. The entire basis is physical,

with emotion and the soft sciences deriving

their reception from perception. Could it be

that there are other modes of received

information? Social scientists have conducted

experiments with alpha waves and other tools

ad infinitum, which computer software has

completely left out of its definition of world. The

direct result is that they have been omitted

from the possible expressive means of the users

of their software.

Consider the dilemma of relationship building.

Computer science decants human-relationships

as a computable system of categories.

Matchmaking systems find matches through

data in a relational database. Social networking

systems do the same, and offer computed

scores as feedback. Users acquire thousands of

friends with little regard for their qualities.

Friends become binary, they either are friends

or they are not. The quantity is what matters,

the quality is non-calculable. Even when the

number exceeds what might be considered the

literal definition of relationship, the counter

keeps climbing. If social science research

calculates the maximum number of human

relationships at 150 (Dunbar, 1992), computer

science defines it as infinite. A scientific peek

under the skin of such systems hints at some

astounding suggestions. Are friends to be

collected, like points in a game? Are friends to

be removed for poor performance? Are friends

or partners to be determined by categorical

matchmaking? Is the sociology and psychology

of friend-making simply an equation of

demographic data? Do these systems hinder

exploration outside the software designed silos?

Who directs a search in these environments,

database tables or human need?

What We Learn From Our Software

Try evaluating the user interface as whole.

Interfaces encapsulate a variety of anti-

explorative philosophies. They teach users how

to be author led. The environment of an

interface is strewn with expected paths, wrong

turns, and caution signs. Interface is defined

with a push-pull between human and computer.

The need to simplify is emphasized in the

abstracted icons and half-analogies of many

digital interfaces. Software limits resolution,

determining the adequate detail to which a

designer designs. The interface of design

software emphasizes its own approach. It

requires its world to be understood though the

same system under which the designer must

design.

~ 13 ~

By using these interface elements, authors are

prescribing to these philosophical decisions.

Interestingly, few authors of interactive works

think critically about these rules to which they

are subject. They simply understand the world

in which they create to provide rules under

which they must work. If these rules are

oppressive they do little to thwart them.

Instead, they make every effort to use them,

and the artificial divisions that are constructed

for them. These systems teach even the most

revolutionary how to operate under constraints.

That the rules of this interchange between

human and computer are unchallengeable is

another fundamental given assumed by both

author and user.

However, this is not solely the fault of the

creator of these systems. The author received

instruction, and more than likely that instruction

included mandates about when one control is

used over another. A common introduction to

interface design often includes a list of controls

and when to use them.

Graphical user interface instruction focuses on

what is, not necessarily what should be.

Interface design is routinely taught as an

exercise in organizing pre-defined interface

elements, not as an exercise in creating new

interface elements. Designers, in particular, are

driven toward a junkyard mentality, acquiring

interface elements as they are offered by

computer scientists that design them. Yet, to do

so is much like painting with only primary colors.

If it weren’t for the cloud of innate philosophies

in software, designers would see the potential in

blending interface elements. In its simplest,

there would be use for a drop-down list button

or a check-box-button-image-list. Instead, many

designers are using an out of the box approach,

creatively employing use of the set interface

elements provided with their chosen

application.

Designers also have tremendously untapped

potential in the custom design of interface. This

extends beyond the common use of specialized

controls, since controls themselves are one of

many solutions to the dilemma of soliciting

feedback from a user. Using the analogy of the

real world, progressive designs have requested

gestural input. Gestural input represents a

fundamental shift simply because it breaks from

of the computer as machine analogy that

permeates control oriented software. Universal

design has also adopted audio interface as a

hybridized solution to the dilemma of users with

encumbered hands. These two approaches

demonstrate a human-computer interaction

that attempts to emulate human-human

interaction and it could be argued, deteriorates

the analogy of graphical user interface as

machine interface. Yet, these solutions do not

move far from analogy. Speech communication,

could for example, be derived from human-

human interaction. Such design is then not

limited to the creative limits of the designer, but

by their ability to find analogy in relationships

other than human-machine interface.

As an example-limited design, Microsoft

PowerPoint has often been described as a

limiting force in presentation. As Tufte (1993)

suggests in the Cognitive Style of PowerPoint, it

guides discussions in linear paths and decants

content into simple bullet points. It also changes

the way users organize information, as its

attempt at simplicity guides the formation and

organization of information. Even its

organization of information indicates a value

system, where, for example, style is simplified to

color, the software precludes the use of angles,

and changes the order in which commands

might be executed. Users of PowerPoint then

become subjects of the PowerPoint philosophy.

What Software Teaches Users

Sociologists believe that specific social systems

effect the way that their members perceive and

act. The corollary is that members of specific

technical systems, through which they work and

socialize, will have a similar experience. The

software we use on a daily basis effects the way

we understand and act in the rest of the world.

Our systems have already defined new

language, like emailing to im’ing. These new

verbs define asynchronous modes of

conversation. They describe conversation

initiation without invitation. They describe new

ways to converse.

~ 14 ~

The effect extends well beyond language.

Software systems define the way in which we

interact. Where once machine mediated

communication was full-duplex, allowing the

communication of our message at the same

time we are listening to our message, many

popular electronic modes of communication are

not. Asynchronous systems, although in some

ways technologically minor, are the dominant

mode of electronic communication. Email,

message boards, blogs, and critiqued posting

are all single duplex message systems. These

software systems encourage users to talk, and

then listen. An email message is sent, and the

user waits for the response. Other responses to

other questions may arrive in the interim and

messages may simple go unresponded. The

social equivalent is talking into a crowd with no

expectation of your message being heard. In

the case of community posting websites the

notion of communication is profoundly

alienated. Communication becomes a system

where one talks and others wait to find that

which interests them enough to bother talking.

A user posts a movie, and other users browse

the catalog of movies, and may decide to

critique the recently posted movie. There may

be no response at all, akin to speaking in a

classroom and getting no response from teacher

or student. There may be a flood of responses,

but those responses may drift from the subject

of the movie to the appearance of the poster.

This is similar to a presenter receiving critique

on their posture, instead of the content of their

presentation.

The notion of being conversant, listening and

talking, are replaced in these environments by a

new model of conversation. This model is

information provider heavy, and information

consumer bereft. The consumer famine, is not

for lack of information, it is for lack to consume.

Software systems make it easy to ignore and

even easier to skip. These are the conveniences

of software systems. They are also philosophical

loaded.

In the standards of design, systems that do not

offer the autonomy to choose what to see and

what not to see are failing the user because

they fail to provide what the user needs. It is

considered draconian to dictate, or to take

control of the information received by the user.

Yet, are there not compulsory experiences that

require the attention of the user. Is a film not an

entirely different experience if the viewer skips

through the center of it, or watches it while

watching another? Are the world’s greatest

speeches effective as web broadcasts?

One philosophy dominates the software

industry, and that philosophy is that freedom of

choice is positive. This is perhaps a remnant of a

developed society which champions choice, or

the opposite, a society which has reveled in the

choices provided by its systems championing

that which it believes empowers it. Does it

improve the movie viewers experience to be

able to move through the film or is that choice a

remnant of an analogy to an archaic device

whose translation disagrees with the

philosophies of software design and

development. Media player software, for

example, uses the same control concepts as a

cassette recorder. Yet, isn’t digital media

unbound from the limitations of its

predecessors? Aren’t the choices provided by

digital media players analogy based, but use

deficient? The choices they provided are not

necessarily appropriate; they are informed by

previous systems. The choices given are no

better than they choices we had. In such cases

the choices given are not given by some well-

designed analysis of need, they are given by

precedent. Choices given by precedent may

become superfluous choices.

What is the need for a choice when its results

are negligible? A conventional tape player

offered play, stop, pause, fast forward, and

rewind and eject. Any media player that

provides all six options offers superfluous

choice. Eject lacks proper analogy in the digital

domain because files are switched, not removed

and replaced. Pause lacks application because

digital files are either played or stopped; there is

no need to leave the tape head pressed against

the tape to preserve the current time slot. Yet

design dictates that this choice, in particular

must be preserved. The result is that many

media players retranslate the stop. Stop

becomes stop and reset to the beginning, where

pause remains the literal stop playing media.

The result is a misappropriation of concept.

~ 15 ~

Where once there was analogy, there is an

artificial preservation of choice and

reapplication of concept. Stop is redefined. Stop

means stop and reset, pause means stop. The

relationship to the philosophy of

communication returns. If one pauses a

message, it lingers. If one stops a message it

must be started again, for there is no

communication that continues where it was left

off. Here the nature of communication is being

dictated through choice. Communication,

whether it is an asynchronous messaging system

or the message in digital media, has a few

properties defined by software. These include:

• Messages may be broken into

segments; the whole is equivalent to its

parts.

• Messages are navigable

• Messages are sequenced by

quantifiable units

All of these properties are dominated by

contemporary computer science approach. The

message can be reduced to its smallest parts

and in doing so the message can be simulated.

Speak with many artists and this can be an

inflammatory idea. Can a film be understood by

anyone of its 60 minutes? Can an oratorical

discussion be preserved as a list of items which

can be skipped through, sorted by topic, or

returned by topic relevance? Is this essay

reducible to a single paragraph? Is a mash up of

sound bites representative of its subject?

The destructive power of computer science

reduction demonstrates itself. That which was

whole becomes parts. What does such daily

behavior teach people about their world? Does

it encourage us to long for an opportunity to

fast-foreword through our monotonies? Does it

encourage us to find the shortcut and get to

what matters to us? Does it teach us to

perceive the parts instead of the whole?

Consider other philosophical approaches to

message. What does a non-navigable message

communicate? What does the definition of

quantifiable units do to the subject? Can

message units also include objective items

outside the analogy of time-based linear

systems?

What Software Teaches Masters and Novices

It is important to remember that software

systems have the ability to confirm our

perceptions. When the application of an idea

proves successfully, it proves itself. If editing a

movie in a linear editing system like Adobe

Premier proves effective, we are encouraged to

subscribe to its philosophies. It is only when the

system fails to be successful that we begin to be

critical of it. We then ask the important critical

questions. Why didn’t it work? What is the

software doing, that it should not? Where is the

incongruity between my understanding of the

situation and the system itself?

These are the questions that more often arise

from either the masters of the systems (e.g.

expert users and hackers) or from the

uninitiated who have not been indoctrinated

with the philosophical grounds of the

application. The hacker exploits the

shortcomings of the software system, its lack of

proper granularity, or its inability to handle

specific situations.

The beginner experiences the software without

confining definitions. Yet, each software

system requires the beginner to understand its

definitions, whether original or derived, for use.

If the beginner fails to understand, they fail to

use the software, at least in its intended use.

This creates an interesting situation. Those

people most capable of critical assessment of

software philosophies are those at its ends.

People who have never used it and people who

have learned it very well have the best

perspective to provide critique. The distribution

of those two populations varies widely between

software systems.

The result is a varying quality of criticality. The

more specialized system receives the least

number of highly expert, highly critical

assessments. The least specialized and highly

used application does receive critical

assessment at the expert level, but little

assessment at the beginner level. Herein lies the

dilemma. Experts offer their critique from

within the constraints of the system. They can

do comparative analysis, and understand the

~ 16 ~

shortcomings of an application from within the

application’s design. Beginners are outside the

application and its inherent philosophies. They

have not been indoctrinated with the rules of

use. Their unfamiliarity gives them an

important perspective from which to critique. As

software designers, much of the critical

assessment comes from the expert user.

Critique of systems by beginners is instead often

used to understand the critical gateway to

indoctrinating the new user into the software

systems philosophy. The goal of many software

design assessments is not to radically alter the

approach, it is instead to confirm, refine, and

improve. This is another philosophy exuberantly

promulgated in the philosophy of software.

Systems design is not in need of revolution it is

only in need of constant revision.

Conclusion

The world of software design is due for a

reinterpretation of its values in the same way

that historical societies have revolutionized

themselves by deep assessment of their

universal assumptions. To even describe such

revolutions as next generation is a failure in

critical evaluation of the pervasiveness of these

assumptions. Users of technology have been a

part of a wide sea of universal assumptions that

have at their heart clear philosophical character.

As the population of software users increases,

the visibility of design flaws has naturally

increased. They make themselves apparent in

every days design challenges, the daily hacks

created not by poor design, but by insufficient

design philosophy. Any user of software has

experienced these philosophical disconnects.

Yet, because of the philosophical disparity in

arts and education in particular, the difference

between software philosophies and practice

philosophies becomes most clear. Art practice

champion’s approaches are somewhat ignored

by software. Education seeks a more complete

approach than what computer science deems

practical.

The need to look at the design philosophies

inherent in software is a real. The science is

maturing from a childhood stage of rule

accepting, to an adolescence of rule-bending.

Its historical structures are showing their wear

as its users rock its pillars. In order for new

work to break free from the loops of software

design, artists can explore opportunity in the

undefined regions of software implementation.

The map is incomplete. These new approaches

are not limited by art creation. They include

examining alternative programming paradigms,

such as declarative programming and building

software apart from prepackaged design suites

and application programming interfaces.

~ 17 ~

References

Agarawala, A., Balakrishnan, R. (2006). Keepin'

it real: Pushing the desktop metaphor with

physics, piles and the pen. Proceedings of CHI

2006 - the ACM Conference on Human Factors in

Computing Systems. p. 1283-1292

Barrow, J. (1992). Pi in the sky: Counting,

thinking and being. Clarendon Press

Chomsky, N (2006). Language and mind. New

York, NY: Cambridge University Press.

Dunbar, R.I.M. (1992). Neocortex size as a

constraint on group size in primates, Journal of

Human Evolution 22: 469-493

Lanier, J. (2003). One half a manifesto. In J.

Brockman (Ed.), The new humanists: Science at

the edge (pp. 233-262). New York, NY: Barnes

and Noble.

Lenarcic, J (2004). Behavioral Issues in Software

Development: The Evolution of a New Course

Dealing with the Psychology of Computer

Programming. Journal of Issues in Informing

Science and Information Technology. P. 247-252

McLuhan, Marshall (1994). Understanding

Media. Cambridge, Ma: MIT Press.

Nielsen, J. (1993). Iterative Design of User

Interfaces. IEEE Computer Vol. 26, No. 11

(November 1993), pp. 32-41

Reynolds, C. W. (1987). Flocks, Herds, and

Schools: A Distributed Behavioral Model, in

Computer Graphics, 21(4) (SIGGRAPH '87

Conference Proceedings) pages 25-34

Shneiderman , B (1980). Software Psychology:

Human Factors in Computer and Information

Systems. Boston, Ma: Winthrop Computer

Systems Series

Tufte, E (1993). The Cognitive Style of

PowerPoint. New London, CT. Yale University

Press

